Mathematischer Brückenkurs (Mathe/Info)

Übungsblatt 5

DR. ANTON MALEVICH

Aufgabe 5.1 Berechnen Sie (benutzen Sie den Einheitskreis und die Tabelle):

$$a)\cos\frac{3\pi}{4},\quad b)\cos\frac{11\pi}{6},\quad c)\tan\frac{5\pi}{4},\quad d)\sin\frac{5\pi}{6},\quad e)\sin3\pi,\quad f)\tan\left(-\frac{5\pi}{3}\right),\quad g)\tan\frac{4\pi}{3}.$$

Aufgabe 5.2 Berechnen Sie $\sin \alpha$, $\cos \alpha$ und $\tan \alpha$ $(0 \le \alpha \le \frac{\pi}{2})$, falls gegeben ist:

a)
$$\sin \alpha = \frac{1}{5}$$
,

b)
$$\cos \alpha = \frac{2}{7}$$
,

c)
$$\sin \alpha = \frac{3}{8}$$
.

Aufgabe 5.3 Finden Sie die Seiten, Winkel (falls Tabellenwerte) und die Fläche des Dreicks mit

a)
$$\alpha = \frac{\pi}{4}, \ \beta = \frac{\pi}{3}, \ c = 1;$$

b)
$$\alpha = \frac{2\pi}{3}, \ c = 1, \ b = 2.$$

Aufgabe 5.4 Finden Sie alle Lösungen folgender Gleichungen:

a)
$$\cos x = \frac{1}{2}$$
,

b)
$$\cos x = -\frac{\sqrt{3}}{2}$$
.

Aufgabe 5.5 Berechnen Sie:

a)
$$\arccos 0$$
, b) $\arctan(-1)$, c) $\arcsin \frac{\sqrt{2}}{2}$, d) $\arccos(\sin \frac{3\pi}{7})$, e) $\arcsin(\cos \frac{2\pi}{3})$.

$$rcsin \frac{\sqrt{2}}{s}$$
. d) $arccos(sin \frac{\sqrt{2}}{s})$

e)
$$\arcsin\left(\cos\frac{2\pi}{3}\right)$$